Monday, June 24, 2013

José Miguel Hernández Lobato: June 27th


Title: Gaussian Process Vine Copulas for Multivariate Dependence

Abstract: Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is independent from its conditioning variables. In this work, we relax this assumption by discovering the latent functions that specify the shape of a conditional copula given its conditioning variables We learn these functions by following a Bayesian approach based on sparse Gaussian processes with expectation propagation for scalable, approximate inference. Experiments on real-world datasets show that, when modeling all conditional dependencies, we obtain better estimates of the underlying copula of the data.

Special location: Mudd 210.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.